The Relationship between Frictional Resistance and Roughness for Surfaces Smoothed by Sanding

Michael P. Schultz
Department of Naval Architecture & Ocean Engineering, United States Naval Academy, Annapolis, MD 21402

An experimental investigation has been carried out to document and relate the frictional resistance and roughness texture of painted surfaces smoothed by sanding. Hydrodynamic tests were carried out in a towing tank using a flat plate test fixture towed at a Reynolds number (Re): range of $2.8 \times 10^6 - 5.5 \times 10^6$ based on the plate length and freestream velocity. Results indicate an increase in frictional resistance coefficient (C_F) of up to 7.3% for an unsanded, as-sprayed paint surface compared to a sanded, polished surface. Significant increases in C_F were also noted on surfaces sanded with sandpaper as fine as 600-grit as compared to the polished surface. The results show that, for the present surfaces, the centerline average height (R_a) is sufficient to explain a large majority of the variance in the roughness function ($\Delta U'$) in this Reynolds number range. ©2002 ASME

Results:
As long as the sanding is made in the sailing direction, the friction is lower than on the polished surfaces.
Result! The MK12Ti low friction is the fastest!

NEXT TIME YOU SEE a WINNER MK12Ti then feel the different!

Best Regards

WINNER SUPPORT TEAM

Makes you a WINNER